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Abstract

Key message This consensus map of stem rust genes,
QTLs, and molecular markers will facilitate the identi-
fication of new resistance genes and provide a resource
of information for development of new markers for
breeding wheat varieties resistant to Ug99.

Abstract The global effort to identify new sources of resist-
ance to wheat stem rust, caused by Puccinia graminis f. sp.
tritici race group Ug99 has resulted in numerous studies
reporting both qualitative genes and quantitative trait loci. The
purpose of our study was to assemble all available informa-
tion on loci associated with stem rust resistance from 21 recent
studies on Triticum aestivum L. (bread wheat) and Triticum
turgidum subsp. durum desf. (durum wheat). The software
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LPmerge was used to construct a stem rust resistance loci con-
sensus wheat map with 1,433 markers incorporating Single
Nucleotide Polymorphism, Diversity Arrays Technology, Gen-
otyping-by-Sequencing as well as Simple Sequence Repeat
marker information. Most of the markers associated with stem
rust resistance have been identified in more than one popula-
tion. Several loci identified in these populations map to the
same regions with known Sr genes including Sr2, SrND643,
Sr25 and Sr57 (Lr34/Yr18/Pm38), while other significant
markers were located in chromosome regions where no Sr
genes have been previously reported. This consensus map pro-
vides a comprehensive source of information on 141 stem rust
resistance loci conferring resistance to stem rust Ug99 as well
as linked markers for use in marker-assisted selection.

Introduction

Wheat stem rust caused by the pathogen Puccinia graminis
Pers. f. sp. tritici Eriks. and E. Henn., is one of the most
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destructive wheat diseases. It can cause up to 90 % yield
loss in wheat production but has been effectively under
control due to the successful deployment of resistance
genes in wheat cultivars since the 1950s (Mclntosh et al.
1995). However, the outbreak of a new stem rust race in
Uganda named Ug99 (race TTKSK; Pretorius et al. 2000)
spread throughout much of Africa, the Middle East and
Iran and poses an imminent threat to wheat production
worldwide (Singh et al. 2006; Sharma et al. 2013).

To improve the efficiency of wheat breeding for dura-
ble resistance to stem rust, it is essential to understand the
genetic basis. To-date, 58 stem rust resistance (S7) genes
have been numerically designated in wheat as part of the
International Wheat Genetics Symposium Gene Catalog
(MclIntosh et al. 1995, 2011). Several alleles conferring
unique race specificities have been identified for many
of these genes resulting in a total of 65 numerically des-
ignated resistance genes and alleles. Of these genes and
alleles, phenotypic data have been published indicating that
at least 27 are effective or partially effective to the Ug99
race group: Sr2 (Yr30), Sri3, Sr21, Sr22, Sr24, Sr25, Sr26,
Sr27, Sr28, Sr32, Sr33, Sr35, Sr36, Sr37, Sr39, Sr40, Sr42,
Srd44, Srd5, Sr46, Sr47, Sr51, Sr52, Sr53, Sr55 (Lr67/Yrd46/
Pm46), Sr57 (Lr34/Yri8/Pm38), Sr58 (Lr46/Yr29/Pm39)
(Faris et al. 2008; Ghazvini et al. 2012; Kolmer et al. 2011;
Jin and Singh 2006; Jin et al. 2007; Liu et al. 2011a, b; McI-
ntosh et al. 2012; Rouse et al. 2011; Rouse and Jin 2011;
Singh et al. 2013b, c). Several additional resistance genes
have been characterized as resistant to Ug99; however,
their relationship to numerically designated genes has not
been determined: SrAes7t, SrCad, SrND643, SrTA10171,
SrTA10187, SrTA1662, SrTmp, SrWeb, SrIRS™° (Hie-
bert et al. 2010, 2011; Jin and Singh 2006; Jin et al. 2007;
Klindworth et al. 2012; Olson et al. 2013). It is possible
that such genes with temporary designations are redundant
with, or are alleles of, numerically designated genes. Sev-
eral of the numerically designated Sr genes are qualitative
and race specific (Jin et al. 2007; Singh et al. 2011). Quali-
tative genes are phenotyped as present or absent, often at
the seedling stage by observing the characteristic low or
high infection types displayed by them as described by Jin
et al. (2007). One strategy for achieving durable resistance
is to pyramid multiple qualitative resistance genes into each
wheat variety. A major risk associated with the utilization
of qualitative resistance genes is the ability of pathogens to
defeat such genes when they are deployed alone in wheat
cultivars as has been demonstrated by the original Ug99
defeating Sr24, Sr36, and resistance in cultivar ‘Matlabas’
resulting in “Boom and Bust” cycles (Jin et al. 2008, 2009;
Pretorius et al. 2012).

Utilization of quantitative resistance, often based on
multiple minor genes that slow down pathogen infection
and colonization in adult plants, referred to as ‘Adult Plant

@ Springer

Resistance’ (APR) (Gustafson and Shaner 1982), is another
approach for achieving durable resistance. Adult plant
resistance to stem rust in wheat is a complex trait con-
ferred by quantitative trait loci (QTL). This type of resist-
ance can be more durable than single gene resistance due
to race non-specificity of the resistance genes involved. A
total of five numerically designated wheat stem rust resist-
ance genes confer quantitative APR: Sr2, Sr55 (Lr67/Yr46/
Pm46), Sr56, Sr57 (Lr34/Yri8/Pm38), and Sr58 (Lr46/
Yr29/Pm39). In addition, several recent studies have identi-
fied numerous QTL associated with wheat stem rust resist-
ance in diverse germplasm (Bansal et al. 2008; Bhavani
et al. 2011; Crossa et al. 2007; Kaur et al. 2009; Njau et al.
2013; Rouse et al. 2014; Singh et al. 2013a, b, c; Yu et al.
2011, 2012).

The global effort to identify new sources of resistance
to Ug99 has led to the identification of putative new quali-
tative and quantitative resistance loci reported in numer-
ous studies in the past few years in different populations.
As resistance loci are reported, it is important to determine
their potential redundancy in order to prioritize those that
can be deployed in a breeding program. The purpose of this
study was to compile available information on Ug99 resist-
ance loci and their map locations in a single consensus map
to facilitate future mapping studies. The map locations
from various sources were analyzed along with our recent
association mapping projects involving 608 spring and win-
ter wheat breeding lines from CIMMYT and the Interna-
tional Winter Wheat Improvement Program (Yu et al. 2011,
2012). The consensus map contains Diversity Arrays Tech-
nology (DArT), Single Nucleotide Polymorphism (SNP),
Genotyping-by-Sequencing (GBS) and Simple Sequence
Repeat (SSR) markers to facilitate cross-referencing mark-
ers and Ug99 resistance loci with other maps.

Materials and methods
Literature review and synthesis of stem rust resistance loci

Stem rust resistance loci data were collected from 21 recent
studies, for a total of 24 biparental mapping populations,
3 association panels, 2 BC, populations, and two from
resistance gene cloning (Bansal et al. 2008; Bhavani et al.
2011; Crossa et al. 2007; Ghazvini et al. 2012; Haile et al.
2012; Hiebert et al. 2010, 2011; Kaur et al. 2009; Letta
et al. 2013; Olson et al. 2013; Njau et al. 2013; Periyannan
et al. 2013; Rouse et al. 2012, 2014; Saintenac et al. 2013;
Singh et al. 2013a, b, ¢; CIMMYT unpublished, Yu et al.
2011, 2012) (Table 1). The details of the reports, includ-
ing the chromosome positions of stem rust resistance loci,
their LOD (log (Odds)) scores and p values, parents used to
develop the population as well as stem rust pathotypes for
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disease reaction are presented in Table 1. Three of the stud-
ies did not determine stem rust resistance loci by screen-
ing with Ug99 (Bansal et al. 2008; Crossa et al. 2007; Kaur
et al. 2009). Though included these loci in our study, their
effectiveness against Ug99 is unknown and are presented
because of their relevance to Ug99 studies.

Construction of a consensus map

A consensus genetic map was constructed using the Wheat
Interpolated Maps v4 (Diversity Arrays Technology Pty.
Ltd., personal communication) as a reference map.

(http://www.triticarte.com.au/). DArT, SNP, GBS and
SSR markers from the Wheat KASPar SNP database
(http://www.cerealsdb.uk.net/CerealsDB/SNPS/), the 2004
Wheat SSR Consensus Map (Somers et al. 2004), and the
Thatcher/McNeal map (Sherman et al. 2013) with con-
catenated DArT and SSR markers were integrated to the
reference map using the ad hoc R package “LPmerge”
(Endelman and Plomion 2011) and BioMercator V3.0
(http://moulon.Inra.fr). LPmerge is an optimized “syn-
thetic” (Wenzl et al. 2006) or “composite” (Hudson et al.
2012) approach to built a map across multiple populations.
As opposed to minimizing an objective function based on
the observed recombination frequencies between markers
(JoinMap; Van Ooijen 2006) or (MultiPoint; Ronin et al.
2012), this R package based its algorithm directly on the
component linkage maps instead of the recombination
frequencies. Other software uses the same approach, but
LPmerge implements an additional algorithm for resolv-
ing ordinal conflicts found when the marker order was not
consistent between the different linkage maps. Resistance
loci or QTL associated with stem rust resistance identified
from 21 studies and one personal communication (Table 1)
were projected onto the consensus map based on the posi-
tion of the markers linked to the loci when the precision
of the constructed map allowed it (Fig. 2). A star following
the chromosome number on Table 1 tags the QTL not pre-
sent on Fig. 2.

Results
Overview of loci for stem rust resistance

The constructed consensus map contains a total of 1,433
markers distributed among the 21 chromosomes. Fourteen
percent of these markers are SNP, 16.7 % are GBS, 39.4 %
are DATT and 29.9 % are SSR. With a global average dis-
tance of 2.7 cM between markers, the maximum average
distance between markers is observed on chromosome 5D
(16 markers) with 7.6 cM and the minimum average dis-
tance between markers is observed on chromosome 3B

(158 markers) with 1.9 cM. An expected negative correla-
tion is observed between the marker number per chromo-
some and average distance in centimorgan between mark-
ers (r = 0.719). The average chromosome size was 150 cM
with a maximum of 203.3 ¢cM for chromosome 7A and a
minimum of 83.4 cM. Resistance gene and QTL maps and
gene cloning information from 21 studies and one personal
communication (Table 1) involving 24 mapping popula-
tions, three association panels, and two BC, populations
were concatenated to construct a map for stem rust resist-
ance loci (Fig. 1). The map consists of 141 stem rust resist-
ance loci distributed across the genome, many of which
were redundant loci detected in at least two studies. A total
of 37, 86 and 18 resistance loci were located in the A, B,
and D genomes, respectively (Fig. 1). Several hotspots of
resistance loci were observed across the genome. Nine-
teen were located on chromosome arm 3BS, while 6BS,
5BL and 2BL had nine, nine, and seven QTL, respectively.
Among these hotspots, qualitative genes for stem rust
resistance have been mapped on 3BS, 2BL and 5BL, while
no qualitative genes have been characterized on 6BS. Clus-
ters of QTLs were located distally on 5BS, 6BS and 7AS in
regions where no previously reported qualitative or quanti-
tative genes are located.

Chromosome group 1 had 15 QTL and the cloned gene,
Sr33, across the three homoeologous chromosomes. Six
QTL were found on 1A (two on the short arm, three on
the long arm and one is still in an undetermined arm loca-
tion), five using bi-parental crosses (Thatcher/McNeal:
Rouse et al. 2014; PBW343/Kingbird: Bhavani et al. 2011;
PBW343/Kenya Swara; Kristal/Sebatel: Haile et al. 2012
and PBW343/Kenya Kudu: CIMMYT unpublished) and
one using association mapping (LD-SRRSN (winter): Yu
et al. 2012). Five of these QTL are represented in Fig. 2.
One qualitative Ug99 resistance gene was mapped on 1A:
SrIRS.A™g° (Schlegel and Kynast 1987; Jin and Singh
2006; Mclntosh et al. 2012). Seven QTL were found on 1B
(three on the short arm, three on the long arm and one is still
in an undetermined arm location). Four were mapped using
bi-parental crosses (PBW343/Crossbill, PBW343/Kenya
Nyangumi: CIMMYT unpublished; Avocet/Pavon76: Njau
et al. 2013; Bhavani et al. 2011) and three using associa-
tion mapping (ESWYT: Crossa et al. 2007; LD-SRRSN
(spring): Yu et al. 2011 and the AM durum panel: Letta
et al. 2013). Four of these QTL are represented in Fig. 2.
Sr31 (marker XwPt-8949) is on a 1BL.1IRS rye translo-
cation and is homologous with at least three of the QTL
found in that region. Sri/4, from tetraploid wheat origins
(Heerman and Stoa 1956), was also reported on 1B, close
to the centromere (Mclntosh et al. 1995). The response
of Sri4 to Ug99 has been reported as inconclusive by Jin
et al. (2007) and is not displayed in Fig. 2. Two QTL were
mapped on chromosome 1D (one on the short arm and one
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Chromosome arms

Fig. 1 a Distribution of QTL associated with stem rust resistance by
chromosome arm based on 21 studies. b Distribution of QTL associ-
ated with stem rust resistance by chromosome based on 21 studies. ¢

in an undetermined arm location) using bi-parental crosses
(HD2009/WL711: Kaur et al. 2009; Avocet/Pavon76: Njau
et al. 2013). One of these QTL is represented in Fig. 2.
The QTL linked to XwPt-7140 on 1DS coincides with at
least one of the four known Sr genes located in that region
(SrTA1662, Sr33, Sr45, Sr50: Rouse et al. 2011; Sambasi-
vam et al. 2008; Anugrahwati et al. 2008).

Chromosome group 2 had 19 QTL across the three
homoeologous chromosomes. The short arm of chromo-
some 2A has two QTL where the centromeric stem rust
resistance gene Sr2] (The 1973) is located and the long
arm had one QTL. One of these is represented in Fig. 2.
Two Sr genes have been described on chromosome 2A,
Sr21 (The 1973), derived from Triticum monococcum L.,
as well as Sr32 (Mclntosh et al. 1995). It has to be noted
that stem rust gene Sr32 has also been mapped on chro-
mosome 2B (Mclntosh et al. 2011) as well as 2D (Mago
et al. 2013). These three locations are displayed in Fig. 2,
and Sr32 is displayed distally to each chromosome 2 arm in
Fig. 2. Chromosome 2B is the location of 15 QTL (two on
the short arm, seven on the long arm and the arm location
of six loci are unknown), 10 mapped in bi-parental crosses
(Avocet/Pavon76: Njau et al. 2013; PBW343/Kenya Nya-
gumi and PBW343/Kenya Kudu: CIMMYT unpublished;
PBW343/Juchi, PBW343/Huirivis#l, = PBW343/Muu:
Bhavani et al. 2011; HD2009/WL711: Kaur et al. 2009;
RL6071/Webster: Hiebert et al. 2010; SD1691/LMPG-6:
Rouse et al. 2012; Thatcher/McNeal: Rouse et al. 2014)
and 5 detected using association mapping (ESWYT: Crossa
et al. 2007; LD-SRRSN (spring); AM durum panel: Letta
et al. 2013 and LD-SRRSN (winter): Yu et al. 2011).
Twelve of these loci are shown in Fig. 2. There are 11 des-
ignated Sr genes on 2B (seven of them are shown in Fig. 2)

@ Springer

Distribution of QTL associated with stem rust resistance by genome
based on 21 studies

in addition to Ug99-effective SrWeb (Hiebert et al. 2010).
At least two QTL were identified on 2BS where seven Sr
genes have been reported. Among them, S739 (Niu et al.
2011), Sr40 (Wu et al. 2008), and Sr36 (Rouse et al. 2012)
are effective against the original Ug99 race TTKSK and
became ineffective to the variant TTTSK (Jin et al. 2009).
Resistance genes SrWeb, Sr28, and Sr47 have been reported
on chromosome arm 2BL (Faris et al. 2008; Hiebert et al.
2011; Rouse et al. 2012). Chromosome 2D also had a sin-
gle QTL in a bi-parental cross (PBW343/Kiritati: Bhavani
et al. 2011; location not shown). Chromosome 2DS carries
two qualitative Sr loci (Sr32 and Sr46; Mago et al. 2013; E.
Lagudah, personal communication, 2010) at the position of
the QTL near marker Xbarc90.

On chromosome group 3, 26 QTL were reported as well
as a cloned gene across the three homoeologous chromo-
somes. A single QTL was mapped on 3AS using associa-
tion mapping (AM durum panel: Letta et al. 2013) and two
QTL were mapped on 3AL, one using a bi-parental cross
(PBW343/Kenya Kudu: CIMMYT unpublished) and one
by association mapping (AM durum panel: Letta et al.
2013). Two of these QTL are shown in Fig. 2. Chromosome
3A carries two Sr genes, one cloned by Saintenac et al.
(2013), Sr35 on the long arm and the other one, Sr27, is
located on the short arm (Acosta 1963). The other 23 QTL
were on 3B (2 are on the long arm, 19 on the short arm and
the locations of 2 are unknown). Eighteen were mapped
using bi-parental crosses (Thatcher/McNeal: Rouse et al.
2014; PBW343/Crossbill, PBW343/Kenya Nyangumi,
PBW343/Diniza, PBW343/Kenya Swara, PBW343/Kenya
Kudu and PBW343/Pavon76: CIMMYT unpublished;
HD2009/WL711: Kaur et al. 2009; PBW343/Kingbird,
PBW343/Kiritaki, PBW343/Juchi, PBW2343/Huirivis#l,
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Fig. 2 A consensus map of stem rust resistance loci in wheat. The
map was constructed using the Wheat Interpolated Maps v4 (Diver-
sity Arrays Technology Pty. Ltd., personal communication) as a ref-
erence map. DArT (prefix “wPt”), SNP (prefix “BS” or “SNP”) and
SSR markers linked to stem rust resistance loci were integrated as
described in the “Materials and methods”. The bars with different

PBW343/Muu and Avocet/Pavon76: Bhavani et al. 2011
and Kristal/Sebatel: Haile et al. 2012). Five were mapped
by association analysis (ESWYT: Crossa et al. 2011; LD-
SSRN (spring): Yu et al. 2011). Ten of the mapped loci are
shown in Fig. 2. Eleven of the QTL on chromosome 3BS
are coincident with the slow rusting gene, Sr2, that contrib-
utes to APR (Singh et al. 2006). QTL near the centromere
of chromosome 3B appear to be linked to the seedling
resistance gene Srl2. Though Sr/2 was not characterized
as effective as Ug99 (Jin et al. 2007), recent data suggest
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colors or patterns on the left side of chromosome regions distin-
guish mapping populations used in each study as shown in Table 1.
Major genes that overlapped with QTLs were added to the right side
of chromosomes based on the positions of the linked markers. A.M.
association mapping, B.P. bi-parental population

that it interacts with other resistance loci to confer APR to
Ug99 (Rouse et al. 2014).

Ten QTL were located on group 4 chromosomes. One
QTL was located on 4AS, three were on 4AL and one
was at an unknown location. Among them, one was iden-
tified using a bi-parental cross (PBW343/Juchi: Bhavani
et al. 2011) and four using association mapping (LD-
SRRSN (winter) and LD-SRRSN (spring): Yu et al. 2011;
ESWYT: Crossa et al. 2007). Chromosome 4A carries one
Sr gene temporarily designated as SrND643 (CIMMYT

@ Springer
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Fig. 2 continued

unpublished), overlapping with QTL from several stud-
ies. Though Ug99 effective resistance gene Sr37 has been
introgressed into chromosome 4B, this translocation has
not been used in a breeding program (McIntosh et al.
1995). We did not identify any QTL coincident with the
previously described APR gene Sr55 (Lr67/Yr46/Pm46)
(Mclntosh et al. 2012) on chromosome arm 4DL.

Group 5 had 18 QTL, 3 of which were on chromosome
5A. One of them was identified using a bi-parental cross
(Avocet/Pavon76: Njau et al. 2013), and two by associa-
tion mapping (AM durum panel: Letta et al. 2013). Two of
these loci are shown in Fig. 2. Thirteen QTL were found on
chromosome 5B, ten using bi-parental crosses (Arina/Forno:
Bansal et al. 2008; PBW343/Kingbird, PBW343/Kiritaki,
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PBW343/Juchi, PBW343/Huirivis#1 and PBW343/Muu:
Bhavani et al. 2011; PBW343/Kenya Kudu and PBW343/
Kenya Nyangumi: CIMMYT unpublished; Kristal/Sebatel:
Haile et al. 2012) and three using association mapping
(ESWT: Crossa et al. 2007; LD-SSRN (Spring) and LD-
SSRN (winter): Yu et al. 2011). Eight of the 5B QTL are
shown in Fig. 2. Kaur et al. (2009) detected a distal SBS QTL
in three of the four environments tested using a bi-parental
population. This finding was confirmed by Yu et al. (2011)
in the detection of two QTL distally located on chromosome
5BS by association mapping in spring and winter CIMMYT
germplasm between markers XwPtl149/XwPt 5346 and
XwPt1302/XwPt3873, respectively. Both QTL were minor
but overlapped with the QTL detected by Kaur et al. (2009)
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Fig. 2 continued

(marker wPt5346). The QTL on 5BL from the Arina/Forno
population was recently designated as Sr56 (Mclntosh et al.
2012) and confers APR. No other stem rust resistance genes
have been designated on chromosome 5B. Ug99 resistance
gene Sr53 was recently introgressed from Aegilops genicu-
lata to chromosome arm 5DL where two Ug99 QTL were
identified using bi-parental crosses (HD2009/WL711: Kaur
et al. 2009; RL6071/Webster: Hiebert et al. 2010).

Group 6 had 23 QTL across the three homoeologous chro-
mosomes. On chromosome 6A two QTL were on the short
arm and six on the long arm. Two were mapped using a bi-
parental cross (PBW343/Kenya Swara: CIMMYT unpub-
lished; Kristal/Sebatel: Haile et al. 2012) and six using asso-
ciation mapping (ESWT: Crossa et al. 2007; LD-SRRSN

(spring): Yu et al. 2011; AM durum panel: Letta et al. 2013).
Five of the 6A loci are represented in Fig. 2. Three designated
Sr genes are located on 6A, including three Ug99 resist-
ance genes located on chromosome arm 6AL (Sr26, Sri3,
and Sr52; Hart et al. 1993; MclIntosh 1972; Qi et al. 2011).
Sr52 is not currently used in breeding programs. On 6B there
were 13 QTL (nine on the short arm, two on the long arm and
two have an unknown arm location), 5 were mapped in bi-
parental crosses (PBW343/Juchi, Avocet/Pavon76: Bhavani
et al. 2011; PBW343/Crossbill, PBW343/Kenya Nyangumi:
CIMMYT unpublished; Norind0/LMPG-6: Ghazvini et al.
2012) and 8 by association analysis (LD-SRRSN (spring) and
LD-SRRSN (winter): Yu et al. 2011; ESWYT: Crossa et al.
2007). Twelve of these QTL are represented in Fig. 2. No
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Fig. 2 continued

major Ug99 resistance genes are known to be located in this
region. The 6DS chromosome arm had one resistance gene
identified in a BC, population (Sr7A1662; BC,-TA10187/
KSO5HW 14: Olson et al. 2013) and a QTL identified in bi-
parental crosses (AC Cadillac/Carberry: Lopez-Vera et al.
2014). Neither of the 6DS loci are shown in Fig. 2 because of
difficulty in cross referencing the chromosome location. Four
Ug99 resistance Sr genes have been identified on chromo-
some 6D. Three of them are located on the short arm, Sr42,
SrTA10187 and SrCad (Hiebert et al. 2011; Ghazvini et al.
2012; Lopez-Vera et al. 2014) and one on the long arm, Sr29
(Dyck and Kerber 1977).

Group 7 had 30 QTL across the three homoeologous
chromosomes. Three were mapped on 7AS, three on 7AL,
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and three have unknown locations. Seven were mapped in
bi-parental populations (HD2009/WL711: Kaur et al. 2009;
PBW343/Kingbird: Bhavani et al. 2011; PBW343/Diniza,
PBW343/Kenya Swara, PBW343/Kenya Nyangumi: CIM-
MYT, unpublished; Kristal/Sebatel: Haile et al. 2012) and
two were mapped by association mapping (AM durum
panel: Letta et al. 2013). Five of these QTL are shown in
Fig. 2. Gene Srl5 (not shown in Fig. 2) and Ug99 effec-
tive gene Sr22 (The 1973) are located on 7AL. On 7B
there were ten QTL, five of which were mapped using
bi-parental crosses (PBW343/Huirivis#1: Bhavani et al.
2011; PBW343/Kenya Nyangumi, PBW343/Kenya Kudu:
CIMMYT, unpublished; Avocet/Pavon76: Njau et al.
2013; Kristal/Sebatel: Haile et al. 2012) and five using
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Fig. 2 continued

Yu et al. 2011). Seven of these QTL are shown in Fig. 2.
Pleiotropic rust and powdery mildew resistance gene Sr57
(Lr34/Yr18/Pm38), Sr44 as well as SrTAI0171 are located
on 7DS (Kolmer et al. 2011; Bernd Friebe, personal com-
munication) and S725 as well as Sr43 (Xu et al. personal
communication) are located on 7DL.

association analysis (ESWYT: Crossa et al. 2007; LD-
SRRSN (spring) and LD-SRRSN (winter): Yu et al. 2011).
Seven of these QTL are represented in Fig. 2. Eight of
these QTL are mapped near Sr/7 (position not represented
in Fig. 2) (Bansal et al. 2008). The 7D chromosome had 11
QTL, 6 mapped in bi-parental crosses (Thatcher/McNeal:
Rouse et al. 2014; PBW343/Kiritaki, PBW343/Kingbird:
Bhavani et al. 2011; Arina/Forno: Bansal et al. 2008;
PBW343/Kenya Swara: CIMMYT, unpublished; BC2-
TA10171/KSO5SHW14: Olson et al. 2013), whereas five
were mapped in association panels (ESWYT: Crossa
et al. 2007; LD-SRRSN (spring) and LDSRRSN (winter):

Discussion

Four maps including the Wheat Interpolated DArT Maps
v4, the wheat consensus SSR map, the wheat KASPar

@ Springer



1576 Theor Appl Genet (2014) 127:1561-1581
BS00000785 BSQ0003702
WPt-2175 WPL7745 WP
AM. BP. o, {gwm617_2  SNPPMOPp1519638/55 AM. BP. 00 w;{ﬂg? barc1136 gxmwél‘eaggggsov/v@ tha774
WPt-3774 WPL-766: AM. BP. oo 922
1.0 BS00003785 BS00003792 a;{:%gg% xE{:%SQ
86 417 1 14 BS00005795 WP-3130 wP1-1852
- 18 P 3376 Pt-4930 wht3soq "TUeE
: w w wi
§§ barc1159 19 §/Setast, Sr42|SrTA10187
: 16 SyOpL362
i 537 N&dniasr SrCad
10.0 SYOPLI45] SyopLi
66 1.3 iwPt-3424 SNPPMOp|239709/60
26.2 570 ‘gg SNPPMOD157697/36
B ?g 185 SyOpL1247
7.3 19.8 SyOpL14
89 23.0 WPt-5596
9 {1 BS00010415 _cfd13
]9521 | 266 SNPPMOp1227776/50
299 ¥ 27.6 WPt-5333
45.0 BS00011125 323 \Jesoo%%us cfd13 3011 | 1BS00003852
512 PAPMM6137386 -BS00003852 108 gumsts SNPPMOp103652/20
\_J - - || |BS00022668 wPt-! 3733 E yOpL1
:l’j ] XE:_SSZ wProsee gwm518 - barci16: a154] | ‘{Bsuoozzssa WPt-3733
B o e . SPto00d w7636
ol = NS -BS00086964 47.9 Ji—\ BSoo0g6964
55.9 \ BS00083630 [ [ barcida prep/ ety e
60.4 ———WPt-669498 . *Mjwp{j‘g‘, WPt-8952 51.4 JF\ SNPPMOp261873/83
- WPt 53.1 J—\ wpt-5
65.0 —|—{{IWm334 BS00010933 WPL-3045 WPL-1264 547 BS00010993
(WPt-7623  wPt-6520 wPt-8268 55.9 5300109035
WP1-4016 BS00010993 252 1 \B2000937
ISNPPMOp10333/21 WP1-5037 wme135 ' SNPPMOp3332865/80
Wmelbe 626 lwmedt7.2” SNPPNIOp372691/21
BS00109036 63.4 e P
BS00023187 9
Bpa0ay 3.4 SyOpuzzs
782 ——1WPt-8266 \ gwm200a 784
800 | | uerzers werter WP.5B02 o8 ssco)gcg;?eo
WPt 5
Rt
88.7 - wPt-0959 79577
891 NwPt-7599 Sr11
89.4 WPt-0357 wPt-8833
: IwPt-3091
104.0 8
99.7 BS00011458
1019 100.9-—{~WwP1-5480 Sr29
108.9 ——=wP7373 102644 BSDDO||458 BS00085589 194.841-B300010618
106.8: 173 X
1129 barct44 Sr26 18;155455655&18 107 4N BS60523086
195471 Boag1 1091 WP1-9256
119.3 ol 104 gwm570 110.4; BS00023066
125.3 —|—~WPt-5601
S 52 123.2. 110651
1331 1L wPt-8662 I 126. BS00110651 127.1—=—wPt-732061
134.8 —1—wPt-5310 128.1—=—wPt-732061
1409 1965
149.0 417
158.0
1628 WM — — — — — — — . Sr13
164.9 \\—{/, WPt-6696
167.0 Y, BS00003339
167.3 3=| (WPt-4229 wPt-9474
167.6 /F=\wPt-1661 wPt-1642
wPt-9976 wPt-4445
169.0/]_|\gpw74ss2
WPL7204  WPL-1695
1604 \1WP|»81 24
1738 WP1-6268
211.0 54
219.0 59

Fig. 2 continued

SNP map, and the Thatcher/McNeal DArT/SSR mark-
ers map were used to build the consensus map for locat-
ing the stem rust resistance loci (Fig. 2). The consensus
map consisted of 1,433 markers and an average marker
interval of 11.5 cM. We focused on integrating markers
in the regions spanning stem rust resistance QTL that can
further facilitate fine mapping and cross referencing the
locations with other maps. Therefore, the marker density
in the QTL regions is higher than the average. For exam-
ple, marker density is almost three times higher in the QTL
region of rust resistance genes on 1B (Fig. 2, Chromosome
1B). The same is true for 2BL, 3BS, 4AL, 6BS and 7DL.
However, the complexity and context dependency of QTL
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identified in different genetic backgrounds and environ-
ments can limit the accuracy of the locations. The accurate
genome location of QTL and major genes across genetic
backgrounds and environments is a prerequisite for the
use of the QTL in MAS. Meta-analysis of QTL identified
in different studies can locate QTL more precisely, thus
facilitating the identification of closely linked markers for
MAS. Because many of the populations from which APR
was assessed lacked Ug99-effective qualitative resistance
genes, the coincidence of APR with seedling resistance was
not likely to be a result of the qualitative resistance genes
conferring APR. For example, on 2BS, seven QTL were
identified that overlapped with two Ug99-effective stem
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Fig. 2 continued

rust resistance genes, Sr39 and Sr36 (Fig. 2b). Since Sr39
was not present in the wheat cultivars used to map the QTL
and Sr36 was only present in the germplasm analyzed by
Yu et al. (2012) where no association was found between
Sr36 and APR, the QTL on 2BS could be conferred by
alleles of these qualitative genes, residual effects of other
Sr genes on 2BS, or new genes. Similarly, the stem rust
resistance gene Sr40 on 2BS is strongly associated with
marker Xgwm388 and coincided with one QTL, however
Sr40 was not present in the corresponding germplasm (Yu
et al. 2011). Allelism testing utilizing both adult plant and
seedling testing to identify both qualitative and quantitative
resistance loci will be necessary to sort out the allelic rela-
tionships among many of the QTL and Sr genes reported
on wheat chromosomes.

In spite of the complexity of the meta-QTL analy-
sis, using the available information on the Sr genes in the

parents of biparental populations and accessions used for
association mapping combined with the QTL location
based on anchored markers, we were able to identify (a)
QTL underlying some previously described Ug99 resistant
Sr genes or residual effects of non Ug99 resistant genes and
(b) putative locations of new Sr genes.

Colocation of Sr genes and QTL

Even though Sr31 carried by the rye introgression 1BL.1RS
is not effective to Ug99, the three QTL found on chromo-
some 1BS, homoeologous to 1RS, are possibly due to a
residual effect of Sr31 or another gene on the rye transloca-
tion because wheat cultivar PBW343 possesses Sr3/. Addi-
tional studies are needed to validate whether the 1BS QTL
are effects of the IBL.IRS translocation or if there are one
or more new APR genes on 1BS. Adult plant resistance

@ Springer



1578

Theor Appl Genet (2014) 127:1561-1581

gene Sr58 (Lr46/Yr29/Pm39) mapped distally on 1BL
(McIntosh et al. 2012) and is independent of the seven QTL
on chromosome 1BS. The response of Sri4 to Ug99 (Jin
et al. 2007) was inconclusive, but because of its tetraploid
origin and linkage to centromeric markers, the QTL on
1BS highlighted by Letta et al. (2013) is likely conferred
by Sri4. Chromosome arm 2B, with 15 QTL, has the sec-
ond highest number of QTL per chromosome arm, but also
the highest number of known qualitative Ug99 Sr genes (6
numerically designated: Sr39, Sr32, Sr36, Sr40, Sr47, Sr28
and SrWeb). Sorting out the allelic relationships among
these QTL and at least 11 qualitative Sr genes (seven Ug99
resistant and four non Ug99 resistant Sr genes) on chro-
mosome 2B will be necessary to determine whether any
new Sr genes have been detected or if they are the results
of residual effects. The three QTL found in the AM durum
panel (Letta et al. 2013) on chromosome 6AL overlap with
Sri3, and even though Sri3 is not common in bread wheat,
its presence in durum wheat suggests that the large region
highlighted is most likely Sr/3. Similarly, further studies
are required to determine the allelic relationships among
SrTA1662, SrCad, and Sr42 on 6DS (Hiebert et al. 2011;
Ghazvini et al. 2012; Lopez-Vera et al. 2014). Chromo-
some 7B has nine QTL, eight of these QTL mapped near
Srl17 (position not represented on Fig. 2) (Bansal et al.
2008). Though Sri7 is not effective to Ug99 in a qualita-
tive manner (Jin et al. 2007) it is possible that Sr/7 confers
a residual APR effect. On chromosome 7D, early studies
indicated that Sr57 (Lr34/Yri18/Pm38), Sr58 (Lr46/Yr29/
Pm39) enhanced stem rust resistance in cultivar ‘Thatcher’
(Dyck and Kerber 1977; Kerber and Aung 1999), and later
reports suggested that Sr57 provided APR to stem rust in
diverse backgrounds (Mclntosh et al. 2012). Our previous
studies consistently showed that the STS marker csLV34
was significantly associated with Ug99 resistance in win-
ter and spring CIMMYT wheat panels with major effects
or through gene—gene interactions (Yu et al. 2011, 2012).
Overlap of two QTL located distally on 7DL (Yu et al.
2011) are likely conferred by Sr25 (Ayala-Navarrete et al.
2007) because Sr43 and Sr44 are not currently used in
wheat breeding.

Putative locations of new Sr genes

With six QTL found on 1A, that chromosome could be a
potential new source of new APR. Because Sr/RS""¢° was
introgressed from rye and confers qualitative resistance,
it is most likely different from the six QTL on 1A. The
same is true for the two QTL found on chromosome 1D.
Even though they overlap with four described Ug99 resist-
ant Sr genes (SrTA1662, Sr33, Sr45, Sr50: Rouse et al.
2011; Sambasivam et al. 2008; Anugrahwati et al. 2008),
the Aegilops tauschii or rye origin of these genes make it
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unlikely that these QTL are related. The two QTL found
on chromosome 2A are likely to represent new Ug99 Sr
resistance loci because the only known gene in the region,
Sr21 (The 1973), is derived from T. monococcum, and
because the parents of the population with the 2A QTL
(PBW343/Pavon76: CIMMYT unpublished) are not known
to possess T. monococcum in their pedigrees. Also, Sr2/
was not in the pedigrees of the AM durum panel (Letta
et al. 2013). Chromosome group 3 has the second highest
number of QTL, and chromosome 3B, with 23 QTL has the
highest number of QTL by chromosome arm (Fig. 1). Chro-
mosome arm 3BS has only one Ug99 Sr resistant gene, the
slow rusting gene Sr2 and 19 of the QTL found on that
arm are likely Sr2. In the Thatcher/McNeal population, a
QTL was coincident with Sr/2 on 3BL, a Ug99-ineffective
resistance gene. It is possible that such defeated resistance
genes could confer resistance when combined with genes
such as Sr57 (Lr34/Yr18/Pm38) that have been demon-
strated to confer epistatic resistance to stem rust (Kolmer
et al. 2011; Rouse et al. 2014; Yu et al. 2012). Because
Sri2 is present in the cultivar Thatcher and historically was
used as an important source of resistance, Sr/2 could be
widespread in wheat germplasm. Since no resistance genes
have been characterized on 3BL, the QTL in this region
are conferred by one or more new resistance genes. Ug99
resistance gene Sr5/ has been introgressed into transloca-
tions on each of the group 3 homoeologous chromosomes
(Liu et al. 2011b). Since this gene is derived from Aegilops
searsii and is not currently used in agriculture, none of the
group 3 QTL are conferred by this gene. Chromosome 3A
has three QTL, and the Sr35 cloned gene seems to overlap
with the QTL in a CIMMYT population (CIMMYT unpub-
lished) and in the durum panel (Letta et al. 2013) on chro-
mosome 3AL, these QTL are not Sr35 because seedling
resistance to race TTKSK is absent in the mapping popu-
lation used by CIMMYT. In addition, the 7. monococcum
origin of Sr35 is absent from the pedigrees of the panel
used by Letta et al. (2013). Resistance gene Sr27 is also
on 3A, but this gene is different from these QTL because it
is located on a rye introgression not present in the popula-
tion used to identify these QTL. On Chromosome 4A, the
stem rust resistance gene designated S¥rND643 (CIMMYT
unpublished) is a qualitative gene and the PBW343/Juchi
population does not possess that resistance gene so the
QTL from PBW343/Juchi is likely conferred by a new
resistance gene or allele. The relationships among the QTL
identified on 4AL, S¥rND643, and Sr7 (Singh et al. 2006;
Sears 1954) are not known. The distal end of chromosome
4B appears to be the source of a new Sr gene, although the
variance explained for the QTL is low (9 %) and may rep-
resent a minor effect APR gene. Chromosome 5A does not
carry any previously characterized Sr genes, so the three
QTL identified on that chromosome arm likely represent
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new resistance loci. Although the phenotypic variation for
the two QTL identified by Letta et al. (2013) on durum
wheat is small (R* = 4.1 and 4.4 %), further studies of that
region could support the existence of new Ug99 resistant
loci. The APR gene Sr56 (Mclntosh et al. 2012) on chro-
mosome S5BL was previously designated QSr.Sun-5BL
(Bansal et al. 2008) (not represented in Fig. 2). Among the
12 other QTL found on 5B, at least four are located on the
short arm (Bansal et al. 2008; CIMMYT unpublished; Kaur
et al. 2009; Yu et al. 2011) and likely represent new loci
of importance. Although Kaur et al. (2009) did not test for
APR to Ug99, Yu et al. (2011) also mapped distal SBS QTL
providing strong evidence for minor APR genes located
in this region. Resistance gene S726 on 6AL is present in
conventional common wheat germplasm from Australia,
but was not present in CIMMYT germplasm when these
studies were conducted. Therefore Sr26 does not explain
the QTL identified through association mapping (Crossa
et al. 2007; Yu et al. 2011). A putative new resistance QTL
on 6AS was mapped in the hexaploid biparental PBW343/
Kenya Swara population where no qualitative resistance
genes are located (CIMMYT, unpublished). The QTL
found on 6AL in the tetraploid population Kristal/Sebatel is
likely a new source of resistance since Sri3-linked markers
are in the distal region of 6AL. Chromosome 6B seems to
be a rich source of new Sr genes with nine QTL detected.
The relationship between the QTL on 6BL and Sri/ is
not known but Sr// is ineffective against Ug99 and is not
represented on Fig. 2. Chromosome arm 6BS appears to
be a new source of Sr genes (Crossa et al. 2007; Yu et al.
2011; CIMMYT unpublished). The phenotypic variation
explained by these QTL ranged from 5 to 14 % and most
likely correspond to minor APR genes. Singh et al. (2011)
detected a distal QTL that explained 56 % of the variance
for stem rust on chromosome 6BS (XwPt4283/XwPt7207)
in the bi-parental cross between PBW343/Kenya Nyan-
gumi. Validation of that QTL could be accomplished using
the putative allele carrier, Kenya Nyangumi, in another
bi-parental cross. The QTL on 7AS, either from durum or
bread wheat, once validated, would represent new stem rust
resistance genes as Sr22 is located on 7AL. Since Sr22 was
not present in the parents of the hexaploid mapping popula-
tions, these QTL are not conferred by Sr22. The more dis-
tal QTL found in the Kristal/Sebatel bi-parental tetraploid
population (QSr/PK-7A.2) is likely to be conferred by
Sr22 (Haile et al. 2012). Since Sr genes have not been pre-
viously identified on 7BS, the QTL identified in this region
are likely new.

Overall, the growing number of characterized Sr genes
and QTL demonstrates that there is still potential for dis-
covering new APR genes with varying levels of effect.
This consensus map will facilitate the identification of new
resistance genes and QTL and aid in the development of

improved markers to increase breeding efficiency and the
pool of alleles that are important for the control of Ug99.
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