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LPmerge was used to construct a stem rust resistance loci con-
sensus wheat map with 1,433 markers incorporating Single 
Nucleotide Polymorphism, Diversity Arrays Technology, Gen-
otyping-by-Sequencing as well as Simple Sequence Repeat 
marker information. Most of the markers associated with stem 
rust resistance have been identified in more than one popula-
tion. Several loci identified in these populations map to the 
same regions with known Sr genes including Sr2, SrND643, 
Sr25 and Sr57 (Lr34/Yr18/Pm38), while other significant 
markers were located in chromosome regions where no Sr 
genes have been previously reported. This consensus map pro-
vides a comprehensive source of information on 141 stem rust 
resistance loci conferring resistance to stem rust Ug99 as well 
as linked markers for use in marker-assisted selection.

Introduction

Wheat stem rust caused by the pathogen Puccinia graminis 
Pers. f. sp. tritici Eriks. and E. Henn., is one of the most 
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breeding wheat varieties resistant to Ug99.
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destructive wheat diseases. It can cause up to 90 % yield 
loss in wheat production but has been effectively under 
control due to the successful deployment of resistance 
genes in wheat cultivars since the 1950s (McIntosh et  al. 
1995). However, the outbreak of a new stem rust race in 
Uganda named Ug99 (race TTKSK; Pretorius et al. 2000) 
spread throughout much of Africa, the Middle East and 
Iran and poses an imminent threat to wheat production 
worldwide (Singh et al. 2006; Sharma et al. 2013).

To improve the efficiency of wheat breeding for dura-
ble resistance to stem rust, it is essential to understand the 
genetic basis. To-date, 58 stem rust resistance (Sr) genes 
have been numerically designated in wheat as part of the 
International Wheat Genetics Symposium Gene Catalog 
(McIntosh et  al. 1995, 2011). Several alleles conferring 
unique race specificities have been identified for many 
of these genes resulting in a total of 65 numerically des-
ignated resistance genes and alleles. Of these genes and 
alleles, phenotypic data have been published indicating that 
at least 27 are effective or partially effective to the Ug99 
race group: Sr2 (Yr30), Sr13, Sr21, Sr22, Sr24, Sr25, Sr26, 
Sr27, Sr28, Sr32, Sr33, Sr35, Sr36, Sr37, Sr39, Sr40, Sr42, 
Sr44, Sr45, Sr46, Sr47, Sr51, Sr52, Sr53, Sr55 (Lr67/Yr46/
Pm46), Sr57 (Lr34/Yr18/Pm38), Sr58 (Lr46/Yr29/Pm39) 
(Faris et al. 2008; Ghazvini et al. 2012; Kolmer et al. 2011; 
Jin and Singh 2006; Jin et al. 2007; Liu et al. 2011a, b; McI-
ntosh et al. 2012; Rouse et al. 2011; Rouse and Jin 2011; 
Singh et al. 2013b, c). Several additional resistance genes 
have been characterized as resistant to Ug99; however, 
their relationship to numerically designated genes has not 
been determined: SrAes7t, SrCad, SrND643, SrTA10171, 
SrTA10187, SrTA1662, SrTmp, SrWeb, Sr1RSAmigo (Hie-
bert et al. 2010, 2011; Jin and Singh 2006; Jin et al. 2007; 
Klindworth et  al. 2012; Olson et  al. 2013). It is possible 
that such genes with temporary designations are redundant 
with, or are alleles of, numerically designated genes. Sev-
eral of the numerically designated Sr genes are qualitative 
and race specific (Jin et al. 2007; Singh et al. 2011). Quali-
tative genes are phenotyped as present or absent, often at 
the seedling stage by observing the characteristic low or 
high infection types displayed by them as described by Jin 
et al. (2007). One strategy for achieving durable resistance 
is to pyramid multiple qualitative resistance genes into each 
wheat variety. A major risk associated with the utilization 
of qualitative resistance genes is the ability of pathogens to 
defeat such genes when they are deployed alone in wheat 
cultivars as has been demonstrated by the original Ug99 
defeating Sr24, Sr36, and resistance in cultivar ‘Matlabas’ 
resulting in “Boom and Bust” cycles (Jin et al. 2008, 2009; 
Pretorius et al. 2012).

Utilization of quantitative resistance, often based on 
multiple minor genes that slow down pathogen infection 
and colonization in adult plants, referred to as ‘Adult Plant 

Resistance’ (APR) (Gustafson and Shaner 1982), is another 
approach for achieving durable resistance. Adult plant 
resistance to stem rust in wheat is a complex trait con-
ferred by quantitative trait loci (QTL). This type of resist-
ance can be more durable than single gene resistance due 
to race non-specificity of the resistance genes involved. A 
total of five numerically designated wheat stem rust resist-
ance genes confer quantitative APR: Sr2, Sr55 (Lr67/Yr46/
Pm46), Sr56, Sr57 (Lr34/Yr18/Pm38), and Sr58 (Lr46/
Yr29/Pm39). In addition, several recent studies have identi-
fied numerous QTL associated with wheat stem rust resist-
ance in diverse germplasm (Bansal et  al. 2008; Bhavani 
et al. 2011; Crossa et al. 2007; Kaur et al. 2009; Njau et al. 
2013; Rouse et al. 2014; Singh et al. 2013a, b, c; Yu et al. 
2011, 2012).

The global effort to identify new sources of resistance 
to Ug99 has led to the identification of putative new quali-
tative and quantitative resistance loci reported in numer-
ous studies in the past few years in different populations. 
As resistance loci are reported, it is important to determine 
their potential redundancy in order to prioritize those that 
can be deployed in a breeding program. The purpose of this 
study was to compile available information on Ug99 resist-
ance loci and their map locations in a single consensus map 
to facilitate future mapping studies. The map locations 
from various sources were analyzed along with our recent 
association mapping projects involving 608 spring and win-
ter wheat breeding lines from CIMMYT and the Interna-
tional Winter Wheat Improvement Program (Yu et al. 2011, 
2012). The consensus map contains Diversity Arrays Tech-
nology (DArT), Single Nucleotide Polymorphism (SNP), 
Genotyping-by-Sequencing (GBS) and Simple Sequence 
Repeat (SSR) markers to facilitate cross-referencing mark-
ers and Ug99 resistance loci with other maps.

Materials and methods

Literature review and synthesis of stem rust resistance loci

Stem rust resistance loci data were collected from 21 recent 
studies, for a total of 24 biparental mapping populations, 
3 association panels, 2 BC2 populations, and two from 
resistance gene cloning (Bansal et al. 2008; Bhavani et al. 
2011; Crossa et al. 2007; Ghazvini et al. 2012; Haile et al. 
2012; Hiebert et  al. 2010, 2011; Kaur et  al. 2009; Letta 
et al. 2013; Olson et al. 2013; Njau et al. 2013; Periyannan 
et al. 2013; Rouse et al. 2012, 2014; Saintenac et al. 2013; 
Singh et  al. 2013a, b, c; CIMMYT unpublished, Yu et  al. 
2011, 2012) (Table  1). The details of the reports, includ-
ing the chromosome positions of stem rust resistance loci, 
their LOD (log (Odds)) scores and p values, parents used to 
develop the population as well as stem rust pathotypes for 
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disease reaction are presented in Table 1. Three of the stud-
ies did not determine stem rust resistance loci by screen-
ing with Ug99 (Bansal et al. 2008; Crossa et al. 2007; Kaur 
et al. 2009). Though included these loci in our study, their 
effectiveness against Ug99 is unknown and are presented 
because of their relevance to Ug99 studies.

Construction of a consensus map

A consensus genetic map was constructed using the Wheat 
Interpolated Maps v4 (Diversity Arrays Technology Pty. 
Ltd., personal communication) as a reference map.

(http://www.triticarte.com.au/). DArT, SNP, GBS and 
SSR markers from the Wheat KASPar SNP database 
(http://www.cerealsdb.uk.net/CerealsDB/SNPS/), the 2004 
Wheat SSR Consensus Map (Somers et al. 2004), and the 
Thatcher/McNeal map (Sherman et  al. 2013) with con-
catenated DArT and SSR markers were integrated to the 
reference map using the ad hoc R package “LPmerge” 
(Endelman and Plomion 2011) and BioMercator V3.0 
(http://moulon.Inra.fr). LPmerge is an optimized “syn-
thetic” (Wenzl et  al. 2006) or “composite” (Hudson et  al. 
2012) approach to built a map across multiple populations. 
As opposed to minimizing an objective function based on 
the observed recombination frequencies between markers 
(JoinMap; Van Ooijen 2006) or (MultiPoint; Ronin et  al. 
2012), this R package based its algorithm directly on the 
component linkage maps instead of the recombination 
frequencies. Other software uses the same approach, but 
LPmerge implements an additional algorithm for resolv-
ing ordinal conflicts found when the marker order was not 
consistent between the different linkage maps. Resistance 
loci or QTL associated with stem rust resistance identified 
from 21 studies and one personal communication (Table 1) 
were projected onto the consensus map based on the posi-
tion of the markers linked to the loci when the precision 
of the constructed map allowed it (Fig. 2). A star following 
the chromosome number on Table 1 tags the QTL not pre-
sent on Fig. 2.

Results

Overview of loci for stem rust resistance

The constructed consensus map contains a total of 1,433 
markers distributed among the 21 chromosomes. Fourteen 
percent of these markers are SNP, 16.7 % are GBS, 39.4 % 
are DArT and 29.9 % are SSR. With a global average dis-
tance of 2.7  cM between markers, the maximum average 
distance between markers is observed on chromosome 5D 
(16 markers) with 7.6  cM and the minimum average dis-
tance between markers is observed on chromosome 3B 

(158 markers) with 1.9 cM. An expected negative correla-
tion is observed between the marker number per chromo-
some and average distance in centimorgan between mark-
ers (r = 0.719). The average chromosome size was 150 cM 
with a maximum of 203.3  cM for chromosome 7A and a 
minimum of 83.4 cM. Resistance gene and QTL maps and 
gene cloning information from 21 studies and one personal 
communication (Table  1) involving 24 mapping popula-
tions, three association panels, and two BC2 populations 
were concatenated to construct a map for stem rust resist-
ance loci (Fig. 1). The map consists of 141 stem rust resist-
ance loci distributed across the genome, many of which 
were redundant loci detected in at least two studies. A total 
of 37, 86 and 18 resistance loci were located in the A, B, 
and D genomes, respectively (Fig. 1). Several hotspots of 
resistance loci were observed across the genome. Nine-
teen were located on chromosome arm 3BS, while 6BS, 
5BL and 2BL had nine, nine, and seven QTL, respectively. 
Among these hotspots, qualitative genes for stem rust 
resistance have been mapped on 3BS, 2BL and 5BL, while 
no qualitative genes have been characterized on 6BS. Clus-
ters of QTLs were located distally on 5BS, 6BS and 7AS in 
regions where no previously reported qualitative or quanti-
tative genes are located.

Chromosome group 1 had 15 QTL and the cloned gene, 
Sr33, across the three homoeologous chromosomes. Six 
QTL were found on 1A (two on the short arm, three on 
the long arm and one is still in an undetermined arm loca-
tion), five using bi-parental crosses (Thatcher/McNeal: 
Rouse et al. 2014; PBW343/Kingbird: Bhavani et al. 2011; 
PBW343/Kenya Swara; Kristal/Sebatel: Haile et  al. 2012 
and PBW343/Kenya Kudu: CIMMYT unpublished) and 
one using association mapping (LD-SRRSN (winter): Yu 
et  al. 2012). Five of these QTL are represented in Fig. 2. 
One qualitative Ug99 resistance gene was mapped on 1A: 
Sr1RS.Amigo (Schlegel and Kynast 1987; Jin and Singh 
2006; McIntosh et al. 2012). Seven QTL were found on 1B 
(three on the short arm, three on the long arm and one is still 
in an undetermined arm location). Four were mapped using 
bi-parental crosses (PBW343/Crossbill, PBW343/Kenya 
Nyangumi: CIMMYT unpublished; Avocet/Pavon76: Njau 
et  al. 2013; Bhavani et  al. 2011) and three using associa-
tion mapping (ESWYT: Crossa et  al. 2007; LD-SRRSN 
(spring): Yu et  al. 2011 and the AM durum panel: Letta 
et al. 2013). Four of these QTL are represented in Fig. 2. 
Sr31 (marker XwPt-8949) is on a 1BL.1RS rye translo-
cation and is homologous with at least three of the QTL 
found in that region. Sr14, from tetraploid wheat origins 
(Heerman and Stoa 1956), was also reported on 1B, close 
to the centromere (McIntosh et  al. 1995). The response 
of Sr14 to Ug99 has been reported as inconclusive by Jin 
et al. (2007) and is not displayed in Fig. 2. Two QTL were 
mapped on chromosome 1D (one on the short arm and one 

http://www.triticarte.com.au/
http://www.cerealsdb.uk.net/CerealsDB/SNPS/
http://moulon.Inra.fr
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in an undetermined arm location) using bi-parental crosses 
(HD2009/WL711: Kaur et al. 2009; Avocet/Pavon76: Njau 
et  al. 2013). One of these QTL is represented in Fig.  2. 
The QTL linked to XwPt-7140 on 1DS coincides with at 
least one of the four known Sr genes located in that region 
(SrTA1662, Sr33, Sr45, Sr50: Rouse et al. 2011; Sambasi-
vam et al. 2008; Anugrahwati et al. 2008).

Chromosome group 2 had 19 QTL across the three 
homoeologous chromosomes. The short arm of chromo-
some 2A has two QTL where the centromeric stem rust 
resistance gene Sr21 (The 1973) is located and the long 
arm had one QTL. One of these is represented in Fig.  2. 
Two Sr genes have been described on chromosome 2A, 
Sr21 (The 1973), derived from Triticum monococcum L., 
as well as Sr32 (McIntosh et al. 1995). It has to be noted 
that stem rust gene Sr32 has also been mapped on chro-
mosome 2B (McIntosh et  al. 2011) as well as 2D (Mago 
et al. 2013). These three locations are displayed in Fig. 2, 
and Sr32 is displayed distally to each chromosome 2 arm in 
Fig. 2. Chromosome 2B is the location of 15 QTL (two on 
the short arm, seven on the long arm and the arm location 
of six loci are unknown), 10 mapped in bi-parental crosses 
(Avocet/Pavon76: Njau et  al. 2013; PBW343/Kenya Nya-
gumi and PBW343/Kenya Kudu: CIMMYT unpublished; 
PBW343/Juchi, PBW343/Huirivis#1, PBW343/Muu: 
Bhavani et  al. 2011; HD2009/WL711: Kaur et  al. 2009; 
RL6071/Webster: Hiebert et  al. 2010; SD1691/LMPG-6: 
Rouse et  al. 2012; Thatcher/McNeal: Rouse et  al. 2014) 
and 5 detected using association mapping (ESWYT: Crossa 
et  al. 2007; LD-SRRSN (spring); AM durum panel: Letta 
et  al. 2013 and LD-SRRSN (winter): Yu et  al. 2011). 
Twelve of these loci are shown in Fig. 2. There are 11 des-
ignated Sr genes on 2B (seven of them are shown in Fig. 2) 

in addition to Ug99-effective SrWeb (Hiebert et al. 2010). 
At least two QTL were identified on 2BS where seven Sr 
genes have been reported. Among them, Sr39 (Niu et  al. 
2011), Sr40 (Wu et al. 2008), and Sr36 (Rouse et al. 2012) 
are effective against the original Ug99 race TTKSK and 
became ineffective to the variant TTTSK (Jin et al. 2009). 
Resistance genes SrWeb, Sr28, and Sr47 have been reported 
on chromosome arm 2BL (Faris et al. 2008; Hiebert et al. 
2011; Rouse et al. 2012). Chromosome 2D also had a sin-
gle QTL in a bi-parental cross (PBW343/Kiritati: Bhavani 
et al. 2011; location not shown). Chromosome 2DS carries 
two qualitative Sr loci (Sr32 and Sr46; Mago et al. 2013; E. 
Lagudah, personal communication, 2010) at the position of 
the QTL near marker Xbarc90.

On chromosome group 3, 26 QTL were reported as well 
as a cloned gene across the three homoeologous chromo-
somes. A single QTL was mapped on 3AS using associa-
tion mapping (AM durum panel: Letta et al. 2013) and two 
QTL were mapped on 3AL, one using a bi-parental cross 
(PBW343/Kenya Kudu: CIMMYT unpublished) and one 
by association mapping (AM durum panel: Letta et  al. 
2013). Two of these QTL are shown in Fig. 2. Chromosome 
3A carries two Sr genes, one cloned by Saintenac et  al. 
(2013), Sr35 on the long arm and the other one, Sr27, is 
located on the short arm (Acosta 1963). The other 23 QTL 
were on 3B (2 are on the long arm, 19 on the short arm and 
the locations of 2 are unknown). Eighteen were mapped 
using bi-parental crosses (Thatcher/McNeal: Rouse et  al. 
2014; PBW343/Crossbill, PBW343/Kenya Nyangumi, 
PBW343/Diniza, PBW343/Kenya Swara, PBW343/Kenya 
Kudu and PBW343/Pavon76: CIMMYT unpublished; 
HD2009/WL711: Kaur et  al. 2009; PBW343/Kingbird, 
PBW343/Kiritaki, PBW343/Juchi, PBW343/Huirivis#1, 

A
B

C

Fig. 1   a Distribution of QTL associated with stem rust resistance by 
chromosome arm based on 21 studies. b Distribution of QTL associ-
ated with stem rust resistance by chromosome based on 21 studies. c 

Distribution of QTL associated with stem rust resistance by genome 
based on 21 studies
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PBW343/Muu and Avocet/Pavon76: Bhavani et  al. 2011 
and Kristal/Sebatel: Haile et al. 2012). Five were mapped 
by association analysis (ESWYT: Crossa et al. 2011; LD-
SSRN (spring): Yu et al. 2011). Ten of the mapped loci are 
shown in Fig. 2. Eleven of the QTL on chromosome 3BS 
are coincident with the slow rusting gene, Sr2, that contrib-
utes to APR (Singh et al. 2006). QTL near the centromere 
of chromosome 3B appear to be linked to the seedling 
resistance gene Sr12. Though Sr12 was not characterized 
as effective as Ug99 (Jin et al. 2007), recent data suggest 

that it interacts with other resistance loci to confer APR to 
Ug99 (Rouse et al. 2014).

Ten QTL were located on group 4 chromosomes. One 
QTL was located on 4AS, three were on 4AL and one 
was at an unknown location. Among them, one was iden-
tified using a bi-parental cross (PBW343/Juchi: Bhavani 
et  al. 2011) and four using association mapping (LD-
SRRSN (winter) and LD-SRRSN (spring): Yu et al. 2011; 
ESWYT: Crossa et al. 2007). Chromosome 4A carries one 
Sr gene temporarily designated as SrND643 (CIMMYT 
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Fig. 2   A consensus map of stem rust resistance loci in wheat. The 
map was constructed using the Wheat Interpolated Maps v4 (Diver-
sity Arrays Technology Pty. Ltd., personal communication) as a ref-
erence map. DArT (prefix “wPt”), SNP (prefix “BS” or “SNP”) and 
SSR markers linked to stem rust resistance loci were integrated as 
described in the “Materials and methods”. The bars with different 

colors or patterns on the left side of chromosome regions distin-
guish mapping populations used in each study as shown in Table 1. 
Major genes that overlapped with QTLs were added to the right side 
of chromosomes based on the positions of the linked markers. A.M. 
association mapping, B.P. bi-parental population
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unpublished), overlapping with QTL from several stud-
ies. Though Ug99 effective resistance gene Sr37 has been 
introgressed into chromosome 4B, this translocation has 
not been used in a breeding program (McIntosh et  al. 
1995). We did not identify any QTL coincident with the 
previously described APR gene Sr55 (Lr67/Yr46/Pm46) 
(McIntosh et al. 2012) on chromosome arm 4DL.

Group 5 had 18 QTL, 3 of which were on chromosome 
5A. One of them was identified using a bi-parental cross 
(Avocet/Pavon76: Njau et  al. 2013), and two by associa-
tion mapping (AM durum panel: Letta et al. 2013). Two of 
these loci are shown in Fig. 2. Thirteen QTL were found on 
chromosome 5B, ten using bi-parental crosses (Arina/Forno: 
Bansal et  al. 2008; PBW343/Kingbird, PBW343/Kiritaki, 

PBW343/Juchi, PBW343/Huirivis#1 and PBW343/Muu: 
Bhavani et  al. 2011; PBW343/Kenya Kudu and PBW343/
Kenya Nyangumi: CIMMYT unpublished; Kristal/Sebatel: 
Haile et  al. 2012) and three using association mapping 
(ESWT: Crossa et  al. 2007; LD-SSRN (Spring) and LD-
SSRN (winter): Yu et  al. 2011). Eight of the 5B QTL are 
shown in Fig. 2. Kaur et al. (2009) detected a distal 5BS QTL 
in three of the four environments tested using a bi-parental 
population. This finding was confirmed by Yu et al. (2011) 
in the detection of two QTL distally located on chromosome 
5BS by association mapping in spring and winter CIMMYT 
germplasm between markers XwPt1149/XwPt 5346 and 
XwPt1302/XwPt3873, respectively. Both QTL were minor 
but overlapped with the QTL detected by Kaur et al. (2009) 
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(marker wPt5346). The QTL on 5BL from the Arina/Forno 
population was recently designated as Sr56 (McIntosh et al. 
2012) and confers APR. No other stem rust resistance genes 
have been designated on chromosome 5B. Ug99 resistance 
gene Sr53 was recently introgressed from Aegilops genicu-
lata to chromosome arm 5DL where two Ug99 QTL were 
identified using bi-parental crosses (HD2009/WL711: Kaur 
et al. 2009; RL6071/Webster: Hiebert et al. 2010).

Group 6 had 23 QTL across the three homoeologous chro-
mosomes. On chromosome 6A two QTL were on the short 
arm and six on the long arm. Two were mapped using a bi-
parental cross (PBW343/Kenya Swara: CIMMYT unpub-
lished; Kristal/Sebatel: Haile et al. 2012) and six using asso-
ciation mapping (ESWT: Crossa et  al. 2007; LD-SRRSN 

(spring): Yu et al. 2011; AM durum panel: Letta et al. 2013). 
Five of the 6A loci are represented in Fig. 2. Three designated 
Sr genes are located on 6A, including three Ug99 resist-
ance genes located on chromosome arm 6AL (Sr26, Sr13, 
and Sr52; Hart et al. 1993; McIntosh 1972; Qi et al. 2011). 
Sr52 is not currently used in breeding programs. On 6B there 
were 13 QTL (nine on the short arm, two on the long arm and 
two have an unknown arm location), 5 were mapped in bi-
parental crosses (PBW343/Juchi, Avocet/Pavon76: Bhavani 
et al. 2011; PBW343/Crossbill, PBW343/Kenya Nyangumi: 
CIMMYT unpublished; Norin40/LMPG-6: Ghazvini et  al. 
2012) and 8 by association analysis (LD-SRRSN (spring) and 
LD-SRRSN (winter): Yu et al. 2011; ESWYT: Crossa et al. 
2007). Twelve of these QTL are represented in Fig.  2. No 
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Fig. 2   continued
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major Ug99 resistance genes are known to be located in this 
region. The 6DS chromosome arm had one resistance gene 
identified in a BC2 population (SrTA1662; BC2-TA10187/
KS05HW14: Olson et al. 2013) and a QTL identified in bi-
parental crosses (AC Cadillac/Carberry: Lopez-Vera et  al. 
2014). Neither of the 6DS loci are shown in Fig. 2 because of 
difficulty in cross referencing the chromosome location. Four 
Ug99 resistance Sr genes have been identified on chromo-
some 6D. Three of them are located on the short arm, Sr42, 
SrTA10187 and SrCad (Hiebert et  al. 2011; Ghazvini et  al. 
2012; Lopez-Vera et al. 2014) and one on the long arm, Sr29 
(Dyck and Kerber 1977).

Group 7 had 30 QTL across the three homoeologous 
chromosomes. Three were mapped on 7AS, three on 7AL, 

and three have unknown locations. Seven were mapped in 
bi-parental populations (HD2009/WL711: Kaur et al. 2009; 
PBW343/Kingbird: Bhavani et  al. 2011; PBW343/Diniza, 
PBW343/Kenya Swara, PBW343/Kenya Nyangumi: CIM-
MYT, unpublished; Kristal/Sebatel: Haile et al. 2012) and 
two were mapped by association mapping (AM durum 
panel: Letta et al. 2013). Five of these QTL are shown in 
Fig.  2. Gene Sr15 (not shown in Fig.  2) and Ug99 effec-
tive gene Sr22 (The 1973) are located on 7AL. On 7B 
there were ten QTL, five of which were mapped using 
bi-parental crosses (PBW343/Huirivis#1: Bhavani et  al. 
2011; PBW343/Kenya Nyangumi, PBW343/Kenya Kudu: 
CIMMYT, unpublished; Avocet/Pavon76: Njau et  al. 
2013; Kristal/Sebatel: Haile et  al. 2012) and five using 
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association analysis (ESWYT: Crossa et  al. 2007; LD-
SRRSN (spring) and LD-SRRSN (winter): Yu et al. 2011). 
Seven of these QTL are represented in Fig.  2. Eight of 
these QTL are mapped near Sr17 (position not represented 
in Fig. 2) (Bansal et al. 2008). The 7D chromosome had 11 
QTL, 6 mapped in bi-parental crosses (Thatcher/McNeal: 
Rouse et  al. 2014; PBW343/Kiritaki, PBW343/Kingbird: 
Bhavani et  al. 2011; Arina/Forno: Bansal et  al. 2008; 
PBW343/Kenya Swara: CIMMYT, unpublished; BC2-
TA10171/KS05HW14: Olson et  al. 2013), whereas five 
were mapped in association panels (ESWYT: Crossa 
et al. 2007; LD-SRRSN (spring) and LDSRRSN (winter): 

Yu et al. 2011). Seven of these QTL are shown in Fig. 2. 
Pleiotropic rust and powdery mildew resistance gene Sr57 
(Lr34/Yr18/Pm38), Sr44 as well as SrTA10171 are located 
on 7DS (Kolmer et al. 2011; Bernd Friebe, personal com-
munication) and Sr25 as well as Sr43 (Xu et  al. personal 
communication) are located on 7DL.

Discussion

Four maps including the Wheat Interpolated DArT Maps 
v4, the wheat consensus SSR map, the wheat KASPar 
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SNP map, and the Thatcher/McNeal DArT/SSR mark-
ers map were used to build the consensus map for locat-
ing the stem rust resistance loci (Fig.  2). The consensus 
map consisted of 1,433 markers and an average marker 
interval of 11.5  cM. We focused on integrating markers 
in the regions spanning stem rust resistance QTL that can 
further facilitate fine mapping and cross referencing the 
locations with other maps. Therefore, the marker density 
in the QTL regions is higher than the average. For exam-
ple, marker density is almost three times higher in the QTL 
region of rust resistance genes on 1B (Fig. 2, Chromosome 
1B). The same is true for 2BL, 3BS, 4AL, 6BS and 7DL. 
However, the complexity and context dependency of QTL 

identified in different genetic backgrounds and environ-
ments can limit the accuracy of the locations. The accurate 
genome location of QTL and major genes across genetic 
backgrounds and environments is a prerequisite for the 
use of the QTL in MAS. Meta-analysis of QTL identified 
in different studies can locate QTL more precisely, thus 
facilitating the identification of closely linked markers for 
MAS. Because many of the populations from which APR 
was assessed lacked Ug99-effective qualitative resistance 
genes, the coincidence of APR with seedling resistance was 
not likely to be a result of the qualitative resistance genes 
conferring APR. For example, on 2BS, seven QTL were 
identified that overlapped with two Ug99-effective stem 
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rust resistance genes, Sr39 and Sr36 (Fig. 2b). Since Sr39 
was not present in the wheat cultivars used to map the QTL 
and Sr36 was only present in the germplasm analyzed by 
Yu et al. (2012) where no association was found between 
Sr36 and APR, the QTL on 2BS could be conferred by 
alleles of these qualitative genes, residual effects of other 
Sr genes on 2BS, or new genes. Similarly, the stem rust 
resistance gene Sr40 on 2BS is strongly associated with 
marker Xgwm388 and coincided with one QTL, however 
Sr40 was not present in the corresponding germplasm (Yu 
et al. 2011). Allelism testing utilizing both adult plant and 
seedling testing to identify both qualitative and quantitative 
resistance loci will be necessary to sort out the allelic rela-
tionships among many of the QTL and Sr genes reported 
on wheat chromosomes.

In spite of the complexity of the meta-QTL analy-
sis, using the available information on the Sr genes in the 

parents of biparental populations and accessions used for 
association mapping combined with the QTL location 
based on anchored markers, we were able to identify (a) 
QTL underlying some previously described Ug99 resistant 
Sr genes or residual effects of non Ug99 resistant genes and 
(b) putative locations of new Sr genes.

Colocation of Sr genes and QTL

Even though Sr31 carried by the rye introgression 1BL.1RS 
is not effective to Ug99, the three QTL found on chromo-
some 1BS, homoeologous to 1RS, are possibly due to a 
residual effect of Sr31 or another gene on the rye transloca-
tion because wheat cultivar PBW343 possesses Sr31. Addi-
tional studies are needed to validate whether the 1BS QTL 
are effects of the 1BL.1RS translocation or if there are one 
or more new APR genes on 1BS. Adult plant resistance 

wPt-9651 wPt-0433
cfa2174

0.0

wmc4797.8

gwm635a BS00022406
BS00022082

10.6

wmc8311.7

wPt-67217113.5

wPt-8043 gwm33213.6

wPt-237114.0

barc100414.1

barc7014.6

barc2214.8

wPt-920715.2

gpw312715.4

wPt-7448 wPt-163917.3

wPt-666820.1

SNPPMOp1069993/13 wPt-4748
wPt742244

20.2

SNPPMOp410647/1621.8

SyOpL119922.5

wPt-6013 wPt-555823.3

wPt-4553 wPt-096123.7

BS0001098824.3

BS0001387229.9

wPt-525731.3

barc15431.5

barc12733.9

wmc283.134.6

wPt-9796 wPt-388335.7

wPt-7186 BS0000255636.3

wPt841839.0

gwm6041.1

BS0011111241.8

wmc283_144.2

wmc28344.4

gwm47146.4

wPt-74471549.8

SNPPMOp2675910/36 cfa2028
wPt-4515

52.4

SyOpL226253.9

BS0002177163.1

barc121_175.6

BS00000847 barc12180.4

wmc60781.4

SyOpL232394.3

BS0007817496.9

SyOpL230098.6

7A 

SyOpL896109.5

cfa2019111.4

wmc633112.4

cfa2040_3112.6

SyOpL2086121.7

cfa2040a wPt-8670123.4

SyOpL1907124.1

SyOpL1876126.5

BS00010809141.1

wPt-741686151.4

wPt-6495155.3
BS00022560157.7

wPt-7763169.0
BS00073988171.1

wPt-8846174.2

BS00011622178.6

BS00081108192.3

BS00023200203.3

wmc3230.0

barc27916.1

wPt-731829.6

gwm53740.0
gwm573 wPt-7653
gpw3188 gpw4444
gpw7342 gwm46
wPt-4863 wPt-0963
wPt-4230 wmc335
gwm297 barc289

53.0

barc276b56.6
barc276c57.7
wPt-7934 wPt-649860.5
wPt-114966.5
wPt-257267.7
wPt-3873 wPt-637269.6
wPt-2305 wPt031272.2
barc101473.2
barc27876.0
wPt-3730 wPt-402577.7
BS0001106979.2
wPt-2994 wPt-227380.6
BS0001050081.4
BS0002210682.6
wPt-735185.3
BS0006573586.1
wPt-182691.2
wmc517 wPt-372392.0
wPt-992593.9
SNPPMM6777963/494.5
gpw804098.7
wPt-800799.3
wPt-0600 SyOpL143
wPt-3190101.5

7B

wPt-4258103.0
SyOpL1352105.1
BS00023023106.8
SNPPMOp402574/42108.2
wPt-5343 BS00010251
SNPPMOp108828/50 SyOpL1351108.5

wPt-0194114.8
BS00074359115.8
wPt-2356119.0
wPt-4300119.3
BS00009464122.3
BS00011065123.7

wPt-5462133.7
gwm577136.0

gwm111141.2
BS00010142153.3
wPt-9488154.4

cfa2040 wPt-25650.0
wPt-6652603.7
gwm6358.3
barc121_211.8
gwm130 gwm437
gpw519917.2

wPt-879821.1
gpw114223.4
barc128b25.9
gwm47330.3
SNPPMOp1043882/1631.5
cfd21_132.9
Sr5733.2
w11733737.3
BS0002246341.4
wPt-1100 wPt-332845.1
barc110445.2
barc35246.8
wPt-7171 SNPPMOp101458/70
wPt-78947.4

csLV34 SNPPMOp1034549/1648.0
cssfr5 wmc46349.3
gwm42856.5
cfd2157.3
wPt-9822 wPt-2258
SNPPMM62481791/38 SyOpL1368
wPt-7763 wPt-731810
wPt-7642

61.3

cfd6663.2
gdm14565.0
wmc15769.1
BS00021987 BS00022511
BS00022721 BS00022875
BS00023045

69.2

BS00003945 BS00010071
BS00012122 BS00021745
BS00023184 BS00024032
BS00024103

69.7

BS00009623 BS00011639
BS00079734 wPt-205470.3

barc9772.0
cfd4178.5
barc121 wPt-1859
gpw5192 wPt-671684.3

gpw7683103.1

wPt-3923 wPt-5674115.6
wPt-664017116.5
gwm635_1117.9
gwm37120.3
cfa2040b122.3

7D 

Fig. 2   continued



1578	 Theor Appl Genet (2014) 127:1561–1581

1 3

gene Sr58 (Lr46/Yr29/Pm39) mapped distally on 1BL 
(McIntosh et al. 2012) and is independent of the seven QTL 
on chromosome 1BS. The response of Sr14 to Ug99 (Jin 
et al. 2007) was inconclusive, but because of its tetraploid 
origin and linkage to centromeric markers, the QTL on 
1BS highlighted by Letta et  al. (2013) is likely conferred 
by Sr14. Chromosome arm 2B, with 15 QTL, has the sec-
ond highest number of QTL per chromosome arm, but also 
the highest number of known qualitative Ug99 Sr genes (6 
numerically designated: Sr39, Sr32, Sr36, Sr40, Sr47, Sr28 
and SrWeb). Sorting out the allelic relationships among 
these QTL and at least 11 qualitative Sr genes (seven Ug99 
resistant and four non Ug99 resistant Sr genes) on chro-
mosome 2B will be necessary to determine whether any 
new Sr genes have been detected or if they are the results 
of residual effects. The three QTL found in the AM durum 
panel (Letta et al. 2013) on chromosome 6AL overlap with 
Sr13, and even though Sr13 is not common in bread wheat, 
its presence in durum wheat suggests that the large region 
highlighted is most likely Sr13. Similarly, further studies 
are required to determine the allelic relationships among 
SrTA1662, SrCad, and Sr42 on 6DS (Hiebert et  al. 2011; 
Ghazvini et  al. 2012; Lopez-Vera et  al. 2014). Chromo-
some 7B has nine QTL, eight of these QTL mapped near 
Sr17 (position not represented on Fig.  2) (Bansal et  al. 
2008). Though Sr17 is not effective to Ug99 in a qualita-
tive manner (Jin et al. 2007) it is possible that Sr17 confers 
a residual APR effect. On chromosome 7D, early studies 
indicated that Sr57 (Lr34/Yr18/Pm38), Sr58 (Lr46/Yr29/
Pm39) enhanced stem rust resistance in cultivar ‘Thatcher’ 
(Dyck and Kerber 1977; Kerber and Aung 1999), and later 
reports suggested that Sr57 provided APR to stem rust in 
diverse backgrounds (McIntosh et al. 2012). Our previous 
studies consistently showed that the STS marker csLV34 
was significantly associated with Ug99 resistance in win-
ter and spring CIMMYT wheat panels with major effects 
or through gene–gene interactions (Yu et  al. 2011, 2012). 
Overlap of two QTL located distally on 7DL (Yu et  al. 
2011) are likely conferred by Sr25 (Ayala-Navarrete et al. 
2007) because Sr43 and Sr44 are not currently used in 
wheat breeding.

Putative locations of new Sr genes

With six QTL found on 1A, that chromosome could be a 
potential new source of new APR. Because Sr1RSAmigo was 
introgressed from rye and confers qualitative resistance, 
it is most likely different from the six QTL on 1A. The 
same is true for the two QTL found on chromosome 1D. 
Even though they overlap with four described Ug99 resist-
ant Sr genes (SrTA1662, Sr33, Sr45, Sr50: Rouse et  al. 
2011; Sambasivam et  al. 2008; Anugrahwati et  al. 2008), 
the Aegilops tauschii or rye origin of these genes make it 

unlikely that these QTL are related. The two QTL found 
on chromosome 2A are likely to represent new Ug99 Sr 
resistance loci because the only known gene in the region, 
Sr21 (The 1973), is derived from T. monococcum, and 
because the parents of the population with the 2A QTL 
(PBW343/Pavon76: CIMMYT unpublished) are not known 
to possess T. monococcum in their pedigrees. Also, Sr21 
was not in the pedigrees of the AM durum panel (Letta 
et al. 2013). Chromosome group 3 has the second highest 
number of QTL, and chromosome 3B, with 23 QTL has the 
highest number of QTL by chromosome arm (Fig. 1). Chro-
mosome arm 3BS has only one Ug99 Sr resistant gene, the 
slow rusting gene Sr2 and 19 of the QTL found on that 
arm are likely Sr2. In the Thatcher/McNeal population, a 
QTL was coincident with Sr12 on 3BL, a Ug99-ineffective 
resistance gene. It is possible that such defeated resistance 
genes could confer resistance when combined with genes 
such as Sr57 (Lr34/Yr18/Pm38) that have been demon-
strated to confer epistatic resistance to stem rust (Kolmer 
et  al. 2011; Rouse et  al. 2014; Yu et  al. 2012). Because 
Sr12 is present in the cultivar Thatcher and historically was 
used as an important source of resistance, Sr12 could be 
widespread in wheat germplasm. Since no resistance genes 
have been characterized on 3BL, the QTL in this region 
are conferred by one or more new resistance genes. Ug99 
resistance gene Sr51 has been introgressed into transloca-
tions on each of the group 3 homoeologous chromosomes 
(Liu et al. 2011b). Since this gene is derived from Aegilops 
searsii and is not currently used in agriculture, none of the 
group 3 QTL are conferred by this gene. Chromosome 3A 
has three QTL, and the Sr35 cloned gene seems to overlap 
with the QTL in a CIMMYT population (CIMMYT unpub-
lished) and in the durum panel (Letta et al. 2013) on chro-
mosome 3AL, these QTL are not Sr35 because seedling 
resistance to race TTKSK is absent in the mapping popu-
lation used by CIMMYT. In addition, the T. monococcum 
origin of Sr35 is absent from the pedigrees of the panel 
used by Letta et  al. (2013). Resistance gene Sr27 is also 
on 3A, but this gene is different from these QTL because it 
is located on a rye introgression not present in the popula-
tion used to identify these QTL. On Chromosome 4A, the 
stem rust resistance gene designated SrND643 (CIMMYT 
unpublished) is a qualitative gene and the PBW343/Juchi 
population does not possess that resistance gene so the 
QTL from PBW343/Juchi is likely conferred by a new 
resistance gene or allele. The relationships among the QTL 
identified on 4AL, SrND643, and Sr7 (Singh et  al. 2006; 
Sears 1954) are not known. The distal end of chromosome 
4B appears to be the source of a new Sr gene, although the 
variance explained for the QTL is low (9 %) and may rep-
resent a minor effect APR gene. Chromosome 5A does not 
carry any previously characterized Sr genes, so the three 
QTL identified on that chromosome arm likely represent 
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new resistance loci. Although the phenotypic variation for 
the two QTL identified by Letta et  al. (2013) on durum 
wheat is small (R2 = 4.1 and 4.4 %), further studies of that 
region could support the existence of new Ug99 resistant 
loci. The APR gene Sr56 (McIntosh et al. 2012) on chro-
mosome 5BL was previously designated QSr.Sun-5BL 
(Bansal et al. 2008) (not represented in Fig. 2). Among the 
12 other QTL found on 5B, at least four are located on the 
short arm (Bansal et al. 2008; CIMMYT unpublished; Kaur 
et  al. 2009; Yu et  al. 2011) and likely represent new loci 
of importance. Although Kaur et al. (2009) did not test for 
APR to Ug99, Yu et al. (2011) also mapped distal 5BS QTL 
providing strong evidence for minor APR genes located 
in this region. Resistance gene Sr26 on 6AL is present in 
conventional common wheat germplasm from Australia, 
but was not present in CIMMYT germplasm when these 
studies were conducted. Therefore Sr26 does not explain 
the QTL identified through association mapping (Crossa 
et al. 2007; Yu et al. 2011). A putative new resistance QTL 
on 6AS was mapped in the hexaploid biparental PBW343/
Kenya Swara population where no qualitative resistance 
genes are located (CIMMYT, unpublished). The QTL 
found on 6AL in the tetraploid population Kristal/Sebatel is 
likely a new source of resistance since Sr13-linked markers 
are in the distal region of 6AL. Chromosome 6B seems to 
be a rich source of new Sr genes with nine QTL detected. 
The relationship between the QTL on 6BL and Sr11 is 
not known but Sr11 is ineffective against Ug99 and is not 
represented on Fig.  2. Chromosome arm 6BS appears to 
be a new source of Sr genes (Crossa et al. 2007; Yu et al. 
2011; CIMMYT unpublished). The phenotypic variation 
explained by these QTL ranged from 5 to 14 % and most 
likely correspond to minor APR genes. Singh et al. (2011) 
detected a distal QTL that explained 56 % of the variance 
for stem rust on chromosome 6BS (XwPt4283/XwPt7207) 
in the bi-parental cross between PBW343/Kenya Nyan-
gumi. Validation of that QTL could be accomplished using 
the putative allele carrier, Kenya Nyangumi, in another 
bi-parental cross. The QTL on 7AS, either from durum or 
bread wheat, once validated, would represent new stem rust 
resistance genes as Sr22 is located on 7AL. Since Sr22 was 
not present in the parents of the hexaploid mapping popula-
tions, these QTL are not conferred by Sr22. The more dis-
tal QTL found in the Kristal/Sebatel bi-parental tetraploid 
population (QSr.1PK-7A.2) is likely to be conferred by 
Sr22 (Haile et al. 2012). Since Sr genes have not been pre-
viously identified on 7BS, the QTL identified in this region 
are likely new.

Overall, the growing number of characterized Sr genes 
and QTL demonstrates that there is still potential for dis-
covering new APR genes with varying levels of effect. 
This consensus map will facilitate the identification of new 
resistance genes and QTL and aid in the development of 

improved markers to increase breeding efficiency and the 
pool of alleles that are important for the control of Ug99.
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